5/2/2017

Agile Design

Agile Aai -
_ ile Design
Modeling 9 9
Search
This article overviews design strategies for agile software development teams. These strategies are critical for scaling agile |J[|I

software development to meet the real-world needs of modern IT organizations. The Agile approach to design is very different
than the traditional approach, and apparently more effective too. It is important to understand:

1. Agile Design Practices

There is a range of agile design practices, see Figure 1, from high-level architectural practices to low-level programming
practices. Each of these practices are important, and each are needed if your team is to be effective at agile design.

Figure 1. Agile design practices.

discipling?

Agile Design Practices

Agile Design Philosophies

Design Throughout The Agile Lifecycle

S5COTT AMBLER <

+ Assaciates <7

: o . , , Disciplined
Architectural A Architecture envisioning — Light-weight modeling at the A'gsi'f;"n?,'mery

Programming {3 components changes.

beginning of a project to identify and think through critical
architecture-level issues.

lteration modeling - Light-weight modeling for a few minutes at
the beginning of an iteration/sprint to help identify your team’s
strategy for that iteration. Part of your iteration/sprint planning
effort.

Model storming - Light-weight modeling for a few minutes on a
just-in-time (JIT) basis to think through an aspect of your solution.

Test-first design (TFD) — Write a single test before writing

enough production code to fulfill that test. Tes.t'dr'fen
design =

Refactoring — Make small changes to a part of your solution } Dk i
Refactoring

which improves the guality without changing the semantics of that
part.

Continuous integration — Automatically compile, test, and
validate the components of your solution whenever one of those

Copyright 2004-2008 Scott W. Ambler

2. Agile Design Philosophies

1

. Agile designs are emergent, they’re not defined up front. Your overall system design will emerge over time, evolving

to fulfill new requirements and take advantage of new technologies as appropriate. Although you will often do some initial
architectural modeling at the very beginning of a project during “iteration 0” this will be just enough to get your team going.
Agilists don’t need to get a fully documented set of models in place before you may begin coding (although sometimes,
just sometimes, you may need to perform look-ahead modeling).

. Your unit tests form much of your detailed design documentation. With a test-driven development (TDD) approach

to development you write a test and then you write just enough domain code to fulfill that test. An important side effect of
this approach is that your unit tests not only validate your code, they also form the majority of your design documentation
in the form of executable specifications. TDD is complementary to AMDD and is actually scaled by AMDD.

. Design models need to be just barely good enough. You don’t need to model every single detail in your models, the

models don’t need to be perfect, and they certainly don’t need to be complete. Remember the last time you coded from a
design spec (if you ever did)? Did you really look at all the fine-grained details? No, because you were competent enough
to handle the details yourself.

. Multiple models. Effective developers realize that each type of model has its strengths and weaknesses, therefore they

need to apply the right model(s) for the job at hand. Because software development is complex you quickly realize that
you need to know about a wide range of models in order to be effective. All of the models mentioned in this newsletter,
and more, are described at the Agile Models Distilled page.

. You typically only need a subset of the models. Although there are many modeling techniques available to your, the

fact is that any given project team will only require a subset. Think of it like this: in your toolbox at home you have a wide

http://agilemodeling.com/essays/agileDesign.htm 1/4

http://agilemodeling.com/
http://www.ambysoft.com/surveys/success2013.html
http://agilemodeling.com/essays/initialArchitectureModeling.htm
http://www.ambysoft.com/essays/agileLifecycle.html#Cycle0
http://agilemodeling.com/essays/modelAhead.htm
http://agilemodeling.com/essays/modelAhead.htm
http://agiledata.org/essays/tdd.html
http://agilemodeling.com/essays/executableSpecifications.htm
http://agilemodeling.com/essays/amdd.htm#Figure1
http://agilemodeling.com/essays/barelyGoodEnough.htm
http://agilemodeling.com/artifacts/index.html)
http://disciplinedagileconsortium.org/
http://scottambler.com/
http://www.ambysoft.com/books/dad.html
http://www.ambysoft.com/books/reviews/current.html
http://agilemodeling.com/
http://agilemodeling.com/essays/whereDoIStart.htm
http://agilemodeling.com/essays/bestPractices.htm
http://agilemodeling.com/
http://agilemodeling.com/
http://agilemodeling.com/
http://scottambler.com/
http://agilemodeling.com/announcements.htm

5/2/2017

10.

1.

12.

13.

14.

15.

16.

Agile Design

array of screwdrivers, wrenches, pliers, and so on. For any given repair job you will use only a few of the tools. Different
jobs, different tools. You never need all of your tools at once, but over time you will use them in a variety of manners.

. Each model can be used for a variety of purposes. A UML class diagram can be used to depict a high-level domain

model or a low-level design, not to mention things in between. Use cases can be used to model the essential nature of a
process or the detailed system usage description which takes into account architectural decisions. Never underestimate
how flexible you can be with models.

. Designers should also code. Whenever a model is handed over to someone else to code there is significant danger that

the programmer will not understand the model, will miss some of its nuances, or may even ignore the model completely in
favor of their own approach. Furthermore, even when hand-offs are successful you will discover that you need far more
details in your models than if you had simply coded it yourself. In short, separating design from programming is a risky
and expensive proposition. It is far more effective to have generalizing specialists on your team that can both design and
code.

Prove it with code. Never assume your design works; instead, obtain concrete feedback by writing code to determine if it
does in fact work.

Feedback is your friend. Never forget that you are a mere mortal just like everyone else on your team. Expect to receive
feedback -- | suggest you actively seek it -- about your work and be prepared to consider it and act accordingly. Not only
will your system be the better for it, you will likely learn something in the process.

Sometimes the simplest tool is a complex CASE tool. When it comes to requirements | prefer inclusive tools such as
paper and whiteboards, but when it comes to design | tend to lean towards sophisticated tools which (re)generate code
for me. Like my grandfather always said, you should use the right tool for the job.

Iterate, iterate, iterate. With an iterative approach to development you work a bit on requirements, do a bit of analysis, do
a bit of design, some coding, some testing, and iterate between these activities as needed. You will also iterate back and
forth between working on various artifacts, working on the right artifact at the right time.

Design is so important you should do it every day. It is critical to think through how you’re going to build something, to
actually design it, before you build it. Your design efforts may take on the form of a sketch on a whiteboard, a detailed
model created with a sophisticated modeling tool, or a simple test that you write before you write business code. Agile
developers realize that design is so important that they do it every day, that design isn’t just a phase that you do early in
the project before getting to the “real work” of writing the source code.

Design for your implementation environment judiciously. Take advantage of features of your implementation
environment, but be smart about it. Trade-offs are normal, but understand the implications and manage the risks involved.
Every time you take advantage of a unique performance enhancement in a product (such as a database, operating
system, or middleware tool) you are likely coupling your system to that product and, thus, reducing its portability. To
minimize the impact of your implementation environment on your systems, you can layer your software and wrap specific
features to make them appear general to their users.

Document complicated things. If it is complicated, then document it thoroughly. Better yet, invest the time to design it
so it is simple. Remember the AM practice Create Simple Content.

Do not over document. You need to document your design, but you shouldn’t over document either. Remember, users
pay you to build systems, not to document them. There is a fine line between under documenting and over documenting,
and only through experience are you able to find it. Be as agile as possible when it comes to documentation.

Don't get sidetracked by the data community. Unfortunately many within the data community believe that you require
a serial approach to design, particularly when it comes to databases. This belief is the result of either not understanding
evolutionary development or some misguided need to identify the "one truth above all else". Evolutionary database design
techniques such as agile data modeling, database refactoring, and database regression testing work incredibly well in
practice.

3. Design Throughout The Lifecycle

Figure 2 depicts the generic agile software development lifecycle. For the sake of discussion, the

Managing
Software Debt

oy Yoy

important thing to note is that there is no design phase, nor a requirements phase for that matter, which Chris Starling

traditionalists are familiar with. Agile developers will do some high-level architectural modeling during

lteration 0, also known as the warm-up phase, and detailed design during development iterations and even [N U5 1!' i L

during the end game (if needed).

Figure 2. The Agile SDLC (click to expand).

Start work on release N+1

Concopt Inception Construction Transition Production Retiroment
(teration -1) (teration 0, Htorations. (Reloase,

‘Warm Up) End Game)
Setectve Intte the Oeploy Rlease N Operaio and
Projct e nto Prodcion Support Release N systom compltaly

Figure 32 depicts the Agile Model Driven Development (AMDD) lifecycle, the focus of which is how
modeling fits into the overall agile software development lifecycle. Early in the project you need to have at
least a general idea of how you're going to build the system. Is it a mainframe COBOL application? A .Net
application? J2EE? Something else? During Iteration 0 the developers on the project will get together in a
room, often around a whiteboard, discuss and then sketch out a potential architecture for the system. This
architecture will likely evolve over time, it will not be very detailed yet (it just needs to be good enough for

now),

and very little documentation (if any) needs to be written. The goal is to identify an architectural

strategy, not write mounds of documentation.

http://agilemodeling.com/essays/agileDesign.htm

2/4

http://agilemodeling.com/artifacts/classDiagram.htm
http://agiledata.org/essays/agileDataModeling.html#InitialDomainModel
http://agilemodeling.com/practices.htm#ProveItWithCode
http://agilemodeling.com/essays/inclusiveModels.htm
http://agilemodeling.com/essays/simpleTools.htm
http://www.ambysoft.com/essays/agileTesting.html
http://www.ambysoft.com/essays/agileTesting.html
http://agilemodeling.com/practices.htm#ApplyTheRightArtifacts
http://agilemodeling.com/practices.htm#CreateSimpleContent
http://agilemodeling.com/essays/agileDocumentation.htm
http://agiledata.org/essays/evolutionaryDevelopment.html
http://agiledata.org/essays/oneTruth.html
http://agiledata.org/essays/agileDataModeling.html
http://agiledata.org/essays/databaseRefactoring.html
http://agiledata.org/essays/databaseTesting.html
http://www.ambysoft.com/essays/agileLifecycle.html
http://agilemodeling.com/essays/phasesExamined.htm
http://www.amazon.com/exec/obidos/ASIN/0321554132/ambysoftinc
http://www.ambysoft.com/artwork/agileLifecycle.jpg
http://www.ambysoft.com/artwork/agileLifecycle.jpg
http://agilemodeling.com/essays/amdd.htm
http://agilemodeling.com/essays/initialArchitectureModeling.htm
http://agilemodeling.com/essays/barelyGoodEnough.html

5/2/2017 Agile Design

T dpentices SCOTT L. BAIN

Figure 3. The AMDD lifecycle.

« Identify the high-level scope Initizl Requirements Initizl Architectural
+ Identify initial “requirements stack” "‘{;‘53'::)'”9 ~ > “}'ésa’:;;ng

« Identify an architectural vision

Iteration 0: Envisioning

« Muodeling is part of iteration planning effort K K
+ Need to model enough to give good estimates Iteration Modeling
+ Need to plan the work for the iteration (hours) -
» Work through specific issues on a JIT manner l - Reviews
» Stakeholders actively participate Model Storming i (optional)
» Requirerments evolve throughout project {minutes) i
» Model just enough for now, you can always come i All lterations
back later {hours) i
« Develop working software via a test-first approach Test Driven
+ Details captured in the form of executable specifications Development (TDD)
(hours)
Iteration 1: Development
| lteration 2: Development
[Iteration n: Development “g‘?'j\fﬂ‘;ﬁ“

When a developer has a new requirement to implement they ask themselves if they understand what is being asked for. If not,
then they do some just-in-time (JIT) "model storming" to identify a strategy for implementing the requirement. This model
storming is typically done at the beginning of an iteration during the detailed planning effort for that iteration, or sometime during
the iteration if they realize that they need to explore the requirement further. Part of this modeling effort will be analysis of the
requirement as well as design of the solution, something that will typically occur on the order of minutes. In Extreme
Programming (XP) they refer to this as a "quick design session".

If the team is taking a Test-Driven Development (TDD) approach the detailed design is effectively specified as developer tests,
not as detailed models. Because you write a test before you write enough production code to fulfill that test you in effect think
through the design of that production code as you write the test. Instead of creating static design documentation, which is bound
to become out of date, you instead write an executable specification which developers are motivated to keep up to date because
it actually provides value to them. This strategy is an example of the AM practice of single sourcing information, where
information is captured once and used for multiple purposes. In this case for both detailed specification and for confirmatory
testing.

When you stop and think about it, particularly in respect to Figure 2, TDD is a bit of a misnomer. Although your developer tests
are "driving" the design of your code, your agile models are driving your overall thinking.

Share with friends: Tweet LinkedIn Facebook StumbleUpon Digg Baidu Google +

Let Us Help

We actively work with clients around the world to improve their information technology (IT) practices, typically in the role of mentor/coach, team lead, or
trainer. A full description of what we do, and how to contact us, can be found at Scott Ambler + Associates.

Recommended Reading

This book, Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the Enterprise describes the Disciplined

http://agilemodeling.com/essays/agileDesign.htm 3/4

http://www.ambysoft.com/artwork/agileLifecycle.jpg
http://www.amazon.com/exec/obidos/ASIN/0321509366/ambysoftinc
http://www.ambysoft.com/essays/agileProjectPlanning.html
http://agilemodeling.com/essays/agileAnalysis.htm
http://agilemodeling.com/essays/agileModelingXP.htm
http://agiledata.org/essays/tdd.html
http://agilemodeling.com/essays/agileDocumentation.htm
http://agilemodeling.com/essays/singleSourceInformation.htm
http://www.ddj.com/development-tools/196603549?cid=Ambysoft
http://agilemodeling.com/essays/whenIsAModelAgile.htm
http://www.scottambler.com/
http://www.ambysoft.com/books/dad.html
http://disciplinedagiledelivery.com/

5/2/2017 Agile Design

Agile Delivery (DAD) process decision framework. The DAD framework is a people-first, learning-oriented hybrid agile approach to IT
solution delivery. It has a risk-value delivery lifecycle, is goal-driven, is enterprise aware, and provides the foundation for scaling agile.
This book is particularly important for anyone who wants to understand how agile works from end-to-end within an enterprise setting.
Data professionals will find it interesting because it shows how agile modeling and agile database techniques fit into the overall solution
: delivery process. Enterprise professionals will find it interesting beause it explicitly promotes the idea that disciplined agile teams
Disciplined should be enterprise aware and therefore work closely with enterprise teams. Existing agile developers will find it interesting because it
Agile Delivery shows how to extend Scrum-based and Kanban-based strategies to provide a coherent, end-to-end streamlined delivery process.

THE OBJECT PRIMER
gy
3T W The Object Primer 3rd Edition: Agile Model Driven Development with UML 2 is an important reference book for agile modelers,

describing how to develop 35 types of agile models including all 13 UML 2 diagrams. Furthermore, this book describes the
fundamental programming and testing techniques for successful agile solution delivery. The book also shows how to move from your
agile models to source code, how to succeed at implementation techniques such as refactoring and test-driven development(TDD).
The Object Primer also includes a chapter overviewing the critical database development techniques (database refactoring,
object/relational mapping, legacy analysis, and database access coding) from my award-winning Agile Database Techniquesbook.

DISCIPLINED Agile Agile Enterprise e Ambysoft A T o

AGILE A Vdeing Data Unied Unified, mysot - Adviser

SCOTT AMBLER _
+ Associates

s

LV

W Bscottwarmbler

-
.

F

e

Copyright 2001-2012 Scott W. Ambler This site owned by Ambysoft Inc.

http://agilemodeling.com/essays/agileDesign.htm 4/4

http://www.ambysoft.com/books/dad.html
http://disciplinedagiledelivery.com/
http://disciplinedagiledelivery.com/
http://www.ambysoft.com/books/theObjectPrimer.html
http://www.ambysoft.com/books/theObjectPrimer.html
http://agilemodeling.com/artifacts
http://agilemodeling.com/essays/umlDiagrams.htm
http://agiledata.org/essays/databaseRefactoring.html
http://agiledata.org/essays/tdd.html
http://agiledata.org/essays/databaseRefactoring.html
http://agiledata.org/essays/mappingObjects.html
http://agiledata.org/essays/legacyDatabases.html
http://www.ambysoft.com/books/agileDatabaseTechniques.html
http://disciplinedagiledelivery.com/
http://agilemodeling.com/
http://agiledata.org/
http://enterpriseunifiedprocess.com/
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.ambysoft.com/
http://www.software-development-experts.com/
http://scottambler.com/
http://twitter.com/scottwambler
http://www.ambysoft.com/licensing.html
http://www.ambysoft.com/scottAmbler.html
http://www.ambysoft.com/

